

Comparative Greenhouse Gas Emissions Analysis of Alternative Scenarios for Waste Treatment and/or Disposal

July 29, 2016

Acknowledgements

Study Commissioned By:

Los Angeles County Department of Public Works

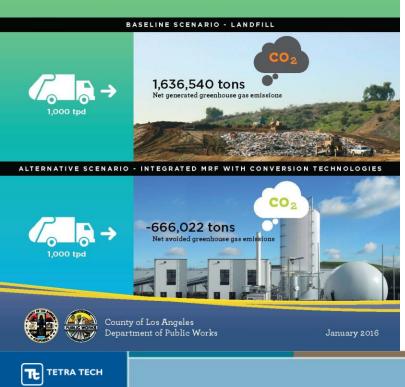
Consultant Team:

TETRA TECH • Tetra Tech, Inc. (Project Management and Baseline Scenario Analyses)

FJS

- E. Tseng & Associates (Alternative Scenario Analysis)
- HDR Inc. (WARM Model Analysis for Gasification Technology Cross Check)

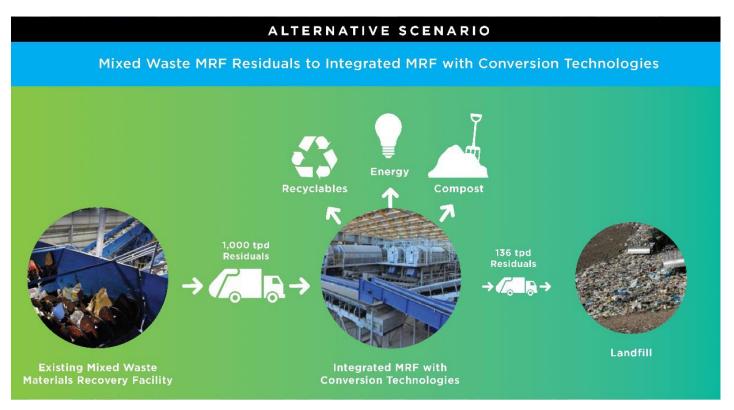
UCLA Extension Student Researchers


Introduction

Comparative Greenhouse Gas Emissions Analysis:

Briefing Report

An Integrated Materials Recovery Facility (MRF) with Conversion Technologies will achieve a net reduction in cumulative greenhouse gas emissions as compared to landfilling post-recycled residuals from a mixed-waste MRF.


Comparison of the Net Greenhouse Gas (GHG) Emissions for Two Waste Management Scenarios

Scenario One

- 25 Years of Transport and Disposal to Out-of-County Landfill
- Truck Fleet with Better Emission Controls
- Landfill with Soil Cap
- Landfill with LFGTE
- 100 Additional Years Assumed for Decomposition in Landfill

Scenario Two

- 25 Years of Operation
- Mechanical Pre-Processing: Recover Additional Recyclables and Separate Wet & Dry Fraction
- Wet Fraction to AD and Composting
- Dry Fraction to Thermal Gasification with Ash Recovery
- Non-Processable Materials Disposed at Landfill

Integrated Approach

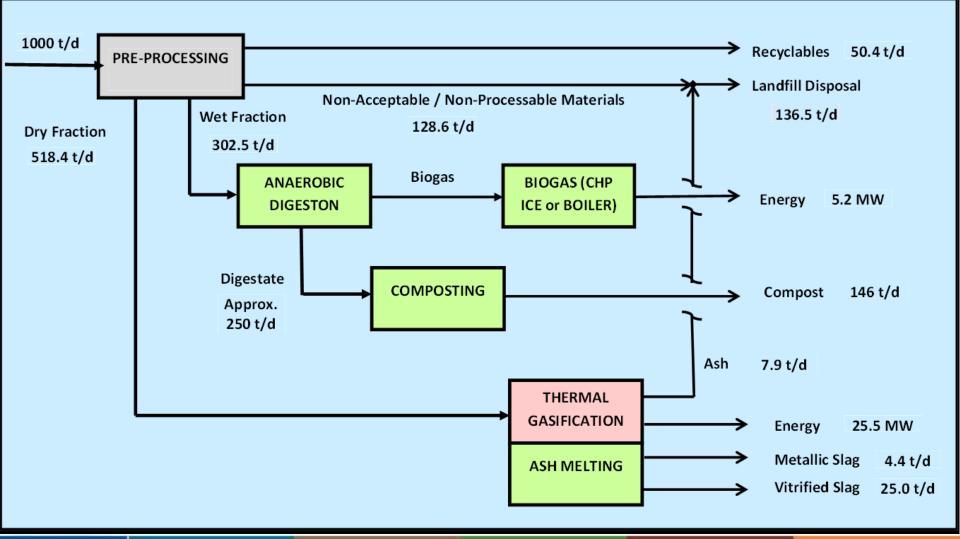
- Prioritize Recycling, Conversion Technologies and Composting; Landfilling as Final Option
- Consistent with the **"MRF-First"** policy of Recovering Marketable Recyclables to the Maximum Extent Reasonably Possible.
- Complies with regulatory drivers to reduce GHG emissions (AB32, AB341, AB 1826, AB1594)

Data Sources

- Modeled California Waste Composition Data (CalRecycle, 2006)
- Statewide Average Composition of Post-Recycled Residuals from a Mixed Waste MRF (After Being Source Separated Curb-Side) Going to Landfill

Table 18 - Estimated Residual Composition for California MRFs Receiving Mixed Waste, 2005

	Est. Pct.	+/.	Est. Tons		Est. Pct.	+/.	Est. Tons
Paper	33.1%	1.8%	2,213,130	Organic	27.3%	2.4%	1,825,548
Uncoated Corrugated Cardboard	4.3%	0.4%	284,205	Food	10.4%	1.3%	691,353
Paper Bags/Kraft	0.7%	0.1%	45,834	Leaves and Grass	7.9%	1.9%	530,628
Newspaper	4.2%	0.5%	278,891	Prunings & Trimmings	1.0%	0.3%	63,914
White Ledger	1.8%	0.3%	120,169	Branches & Stumps	0.3%	0.1%	22,940
Colored Ledger	0.2%	0.0%	13,761	Agricultural Crop	0.0%	0.0%	2,710
Computer Paper	0.0%	0.0%	1,676	Manures	0.0%	0.0%	1,879
Other Office Paper	2.5%	0.3%	166,522	Textiles	2.4%	0.4%	163,550
Magazines/Catalogs	2.5%	0.4%	163,624	Carpet	0.3%	0.1%	22,798
Phone Books/Directories	0.2%	0.4%	12,360	Remainder/Composite Organics	4.9%	0.7%	325,776
	4.7%			Remainder/Composite Organics	4.370	0.7 %	323,770
Other Misc. Paper		0.4%	310,598		40.01		
Remainder/Composite Paper	12.2%	1.1%	815,491	Construction & Demolition	12.6%	2.0%	839,302
				Concrete	0.6%	0.2%	41,868
Glass	1.9%	0.3%	128,415	Asphalt Paving	0.0%	0.0%	215
Clear Glass Bottles & Containers	0.8%	0.2%	54,896	Asphalt Roofing	0.2%	0.1%	12,605
Green Glass Bottles & Containers	0.2%	0.1%	15,722	Lumber	3.1%	0.6%	204,749
Brown Glass Bottles & Containers	0.2%	0.1%	11,930	Treated Wood Waste	1.9%	0.4%	127,948
Other Colored Glass Bottles & Containers	0.0%	0.0%	519	Gypsum Board	0.8%	0.3%	52.064
Flat Glass	0.1%	0.0%	3,497	Rock, Soil, Fines	3.2%	0.6%	216,690
Mixed Cullet	0.4%	0.1%	25,861	Remainder/Composite C&D	2.7%	0.8%	183,161
	0.4%			Remainder/composite Cop	2.7 70	0.0 %	103,101
Remainder/Composite Glass	0.2%	0.1%	15,991				
				Household Hazardous Waste	0.4%	0.1%	25,022
Metal	5.6%	0.8%	372,659	Paint	0.0%	0.0%	1,232
Tin/Steel Cans	1.1%	0.2%	74,031	Vehicle & Equip. Fluids	0.0%	0.0%	0
Major Appliances	0.2%	0.1%	10,799	Used Oil	0.0%	0.0%	459
Used Oil Filters	0.0%	0.0%	305	Batteries	0.3%	0.1%	19,319
Other Ferrous	2.0%	0.5%	136,782	Remainder/Composite HHW	0.1%	0.0%	4.012
Aluminum Cans	0.3%	0.0%	18,331				
Other Non-Ferrous	0.7%	0.2%	49,703	Special Waste	0.5%	0.4%	36,442
Remainder/Composite Metal	1.2%	0.3%	82,706	Ash	0.0%	0.0%	1,111
Remainder/Composite Metal	1.270	0.370	02,700	Sewage Solids	0.0%	0.0%	1,111
Electronics	1.1%	0.3%	73.259	Industrial Sludge	0.0%	0.0%	Ŭ
Electronics							
Brown Goods	0.3%	0.1%	20,966	Treated Medical Waste	0.0%	0.0%	90
Computer-related Electronics	0.4%	0.1%	23,838	Bulky Items	0.0%	0.0%	0
Other Small Consumer Electronics	0.4%	0.1%	28,122	Tires	0.0%	0.0%	1,566
TV's & Other CRTs	0.0%	0.0%	333	Remainder/Composite Special Waste	0.5%	0.2%	33,675
Plastic	16.9%	1.1%	1.127.866	Mixed Residue	0.5%	0.2%	36,508
PETE Bottles	0.7%	0.1%	43,746				
Other PETE Containers	0.1%	0.0%	9,710				
HDPE Natural Bottles	0.3%	0.1%	19.636				
HDPE Colored Bottles	0.3%	0.1%	17,303				
	0.1%	0.0%	4,852				
HDPE 5-gallon buckets (Food)			4,852				
HDPE 5-gallon buckets (Non-Food)	0.3%	0.1%	21,262			_	
Other HDPE Containers	0.1%	0.0%	6,097	Totals	100.0%	L	6,678,151
#3-#7 Bottles	0.1%	0.0%	6,863	Sample count:	120		
Other #3-#7 Containers	0.8%	0.1%	53,697				
Plastic Trash Bags	1.3%	0.2%	87,248				
Grocery/Merch. Bags	1.1%	0.2%	76,432				
Non-bag Comm./Ind. Packaging Film	1.8%	0.4%	117,378				
Film Products	0.1%	0.1%	8,592				
Other Film	3.7%	0.4%	246,411				
Durable Plastic Items	1.2%	0.4%	80,524				
Remainder/Composite Plastic	4.9%	0.5%	328,115				


Data Sources

Post-Recycled Mixed Waste MRF Residuals Composition Separated Into Major Fractions to be Optimized for Further processing:

- Wet Fraction ("DC" for Digestible Component)
- Dry Fraction ("RDF" for Refuse-Derived Fuel)
- Landfill (Non-Processable/Non-Acceptable Materials)

Work Days/Year	365	Important Note: Lower a Materials and Total Are	AVERAGE					UPPER AND LOWER BOUND Lower/Upper 90% Bound (Daily Short Tons)					
Short Tons/Day	1000	Materials, Not Separatly	Process Category (Daily Short Tons)										
Material Group	Material	TOTAL PERCENT	TOTAL DAILY TONS	Recyclables	DC	RDF	Landfill	Reject	Recyclables	DC	RDF	Landfill	Reject
Paper		33.1%		-	49.7	277.1	5	1	4.1 - 5.0	44.6 - 54.8			0.0-0
1	OCC (Recyclable)/Kraft	4.9%	49.4	2.0	7.4	40.0	0.0	0.0	1.8 - 2.1	6.8-8.0	36.7-43.4	0.0-0.0	0.0-0
2	Newspaper	4.2%	41.8	1.3	6.3	34.2	0.0	0.0	1.1 - 1.4	5.5-7.0	30.1 - 38.3	0.0-0.0	0.0-0
3	High Grade Office Paper	4.5%	45.2	1.4	6.8	37.1	0.0	0.0	1.2 - 1.5	6.1 - 7.4	33.6-40.6	0.0 - 0.0	0.0-0
4	Mixed Recyclable Paper	7.3%	72.9	0.0	10.9	61.9	0.0	0.0	0.0 - 0.0	10.1 - 11.8	57.0-66.8	0.0 - 0.0	0.0-0
5	Compostable Paper	8.9%	89.0	0.0	13.4	75.7	0.0	0.0	0.0 - 0.0	11.9 - 14.8	67.7-83.6	0.0 - 0.0	0.0-0
6	Non-Recyclable Paper	3.3%	33.1	0.0	5.0	28.1	0.0	0.0	0.0 - 0.0	4.1-5.8	23.3-33.0	0.0 - 0.0	0.0-0
Plastic		16.9%	168.9	6.1	2.0	153.0	7.5	0.3	5.0 - 7.2	1.8-2.2	139.3 - 166.7	6.8-8.2	0.2-0
7	#1 PET Bottles/Containers (Deposit)	0.7%	6.6	2.9	0.0	3.6	0.0	0.0	2.5 - 3.4	0.0-0.0	3.1 - 4.2	0.0-0.0	0.0-1
8	#1 PET Bottles/Containers (Non-Deposi	0.1%	1.5	0.7	0.0	0.8	0.0	0.0	0.7 - 0.7	0.0-0.0	0.8 - 0.8	0.0 - 0.0	0.0-0
9	#2 HDPE Bottles	0.6%	5.5	2.5	0.0	3.0	0.0	0.0	1.9 - 3.1	0.0-0.0	2.3 - 3.8	0.0-0.0	0.0-1
10	Other Bottles/Containers	1.4%	13.9	0.0	0.0	12.2	1.4	0.3	0.0 - 0.0	0.0-0.0	11.0-13.5	1.2 - 1.5	0.2-1
11	Plastic Film/Wrap	8.0%	80.3	0.0	2.0	78.3	0.0	0.0	0.0 - 0.0	1.8-2.2	72.0-84.5	0.0-0.0	0.0-1
12	Other Plastic Products	6.1%	61.2	0.0	0.0	55.1	6.1	0.0	0.0 - 0.0	0.0-0.0	50.2-59.9	5.6-6.7	0.0-0
Metals		5.4%	54.2	37.5	0.2	5.8	10.6	0.0	29.3 - 45.8	0.2-0.3	4.5 - 7.2	8.2 - 12.9	0.0-0
43	A	0.004	^ ¬	24	0.0	0.4		0.0	24 24	00.00	04 04	0.5 0.5	0.0.0

Mass Balance of Integrated MRF with Conversion Technology

Calculation Methodologies for Baseline and Alternative Scenarios

Industry-Accepted Models to Calculate GHG Emissions for:

Transport:

Landfill Operations:

Buried

Refuse:

MRF Pre-Processing, Anaerobic Digestion, and Composting:

Gasification Cross Check:

	WARM Mo	del
		U.3. ENVIRONMENTAL PROTECTION AGENCY
9	Climate Change - Waste Enclusive Search C of Iro & this Sea The archevistment of search - Sea	ii thea
Cirrate Change Herro	WAste Reduction Model (WARM)	

No Single GHG Emissions Calculation Model was Able to Address All of the GHG Emissions of the Various Components of the Study

Calculation Methodology for Alternative Scenario

Reference Model Data Based on Existing, Operating Facilities for:

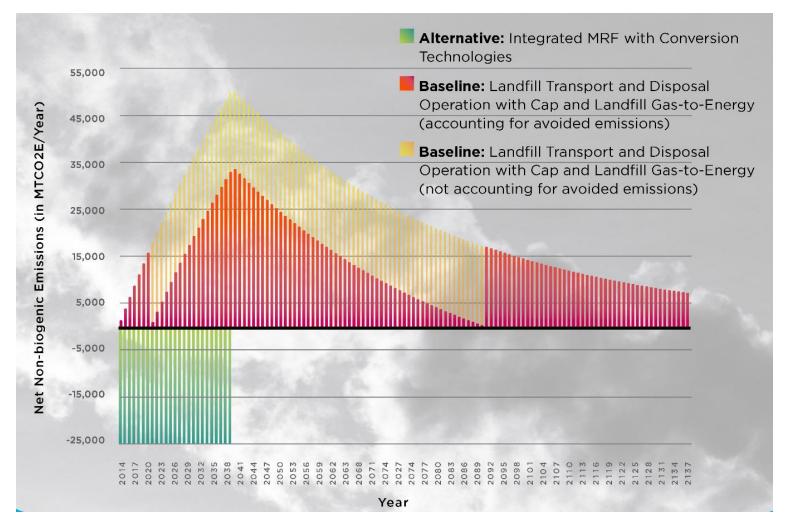
- Process Design and Process Flow Data
- Mass and Energy Balance Data
- Emission Calculations Provided by:
 - Anaergia (Carlsbad, California)
 - JFE Engineering Corporation (Yokohama, Japan)

Results and Conclusion

Comparative GHG Emissions for Years 2014 to 2138 for the Treatment of 1,000 Tons per Day (for 25 Years) of Post-Recycled MRF Residuals (in Metric Tons of Carbon Dioxide Equivalent, MTCO2E)

	SCENARIO	GHG EMISSIONS in MTCO ² E (Years 2014 TO 2138)								
	BASELINE SCENARIO: POST RECYCLED RESIDUAL TO LANDFILL (1000 TPD)	TOTAL EMISSIONS	BIOGENIC EMISSIONS	NON- BIOGENIC EMISSIONS	INDIRECT EMISSIONS	AVOIDED EMISSIONS	NET EMISSIONS (biogenic and non-biogenic)	NET EMISSIONS (only non- biogenic emissions)		
Scenario One 🛶	TOTAL OF TRANSPORTATION AND LANDFILL OPERATONS EMISSIONS (Cap / LFG-to-Energy)		2,479,735	2,877,540	0	1,241,000	4,116,275	1,636,540		
	ALTERNATIVE SCENARIO: INTEGRATED MRF WITH	TOTAL	BIOGENIC	NON-	INDIRECT	AVOIDED	NET EMISSIONS	NET EMISSIONS		
CONVERSION TECHNOLOGY		EMISSIONS	EMISSIONS	BIOGENIC	EMISSIONS	EMISSIONS	(biogenic and non-biogenic)	(only non- biogenic emissions)		
Scenario Two 📥	TOTAL OF INTEGRATED MRF AND CONVERSION TECHNOLOGY COMPONENTS	8,931,770	5,462,299	3,266,635	202,835	4,135,493	4,796,277	(666,022)		

Total Emissions = Biogenic + Non-Biogenic + Indirect (Purchased Electricity, Heat or Steam) Net Emissions = Total – Avoided Emissions


Findings

- Biogenic Emissions Higher for Alternative Scenario due to Gasification Process Converting Biogenic Components of RDF to Carbon Dioxide and Water
- Non-Biogenic Emissions Similar for Both Scenarios (Fugitive Methane Emissions from Landfills and Carbon Dioxide from Gasification Process)
- Avoided Emissions Much Greater for Alternative Scenario Due to Renewable Energy from AD and Gasification Replacing Fossil Fuel Use and Additional Recycling
- Avoided Emissions in Baseline Scenario Due to LFG-To-Energy Replacing Fossil Fuel Use

Results

- 1.64 Million MTCO2E Net GHG Emissions for the Baseline Scenario
- (.67) Million MTCO2E Net GHG Emissions for the Alternative Scenario

TE TETRA TECH

Net GHG Emissions:

- Baseline Scenario = GHG Emissions of 1.64 Million MTCO2E over a 125 Year Period, Comparable to 340,000 Passenger Vehicles Driven for One Year
- Alternative Scenario = Net Avoided GHG Emissions of (0.67)
 Million MTCO2E over a 25 Year Period, Comparable to 140,000 Fewer Passenger Vehicles Driven for One Year

Conclusion

- An Integrated Materials Recovery Facility (MRF) with Conversion Technologies will Achieve a Net Reduction in Cumulative Greenhouse Gas Emissions as Compared to Landfilling Post-Recycled Residuals from a Mixed-Waste MRF
- Net Reduction is Due to Higher Avoided Emissions for Renewable Energy Generation, Replacing Fossil Fuels, and Energy Savings from Additional Recycling

Christine Arbogast Vice President 1360 Valley Vista Drive Diamond Bar, California 91765 (909) 860-7777 christine.arbogast@tetratech.com

QUESTIONS?

Thank you

CT Comparative GHG Analysis February 2016

Comparative GHG Emissions for Years 2014 to 2138 for the Treatment of 1,000 Tons per Day (for 25 Years) of Post-Recycled MRF Residuals (in Metric Tons of Carbon Dioxide Equivalent, MTC02E)

SCENARIO	EMISSIONS (Years 2014 TO 2138): 125 Years										
BASELINE SCENARIO: POST RECYCLED RESIDUAL TO LANDFILL (1000 TPD)	TOTAL EMISSIONS	BIOGENIC EMISSIONS	NON- BIOGENIC EMISSIONS	INDIRECT EMISSIONS	AVOIDED EMISSIONS	NET EMISSIONS (biogenic and non-biogenic)	NET EMISSIONS (only non- biogenic emissions)				
TOTAL OF TRANSPORTATION AND LANDFILL OPERATONS EMISSIONS (Cap / LFG-to-Energy)	5,357,275	2,479,735	2,877,540	0	1,241,000	4,116,275	1,636,540				
Transportation to Landfill (25-yr Landfill Operation) (EMFAC2011)	25,946	-	25,946			25,946	25,946				
Landfill O peration (with cap/LFG-to-energy) (CalEEMod, LandGEM) Lo = 100, Capture rate = 83%	5,331,329	2,479,735	2,851,594		1,241,000	4, 090, 329	1,610,594				
ALTERNATIVE SCENARIO: INTEGRATED MRF WITH CONVERSION TECHNOLOGY	TOTAL EMISSIONS	BIOGENIC EMISSIONS	NON- BIOGENIC EMISSIONS	INDIRECT EMISSIONS	AVOIDED EMISSIONS	NET EMISSIONS (biogenic and non-biogenic)	NET EMISSIONS (only non- biogenic emissions)				
TOTAL OF INTEGRATED MRF AND CONVERSION TECHNOLOGY COMPONENTS	8,931,770	5,462,299	3,266,635	202,835	4,135,493	4,796,277	(666,022)				
MRF Preprocessing (Anaergia EpE)	0	-	-	-	1,646,938	(1,646,938)	(1,646,938)				
Anaerobic Digestion (Digestate to Composting) (EpE) a	842,815	740, 338	102,477	-	563,389	279,426	(460,912)				
Composting of Digestate (Anaergia EpE) ^a	342,435	177,942	164,493	-	9,667	332,768	154,826				
RDF (Average) Gasification and Ash Melting	7,728,236	4,537,816	2,987,584	202,835	1,668,485	6,059,751	1,521,935				
RDF, Slag and Metal Recycling from Ash Melting Process (Average) (WARM)	Included in Process	Included in Process	Included in Process	Included in Process	247,014	(247,014)	(247,014)				
Landfill of Post Integrated MRF Residuals											
Transportation to Landfill (25-yr Landfill Operation) (EMFAC2011)	4,404		4,404			4,404	4,404				
Landfill Operation (with cap/flare) (CalEEMod, LandGEM)	13,880	6,202	7,678			13,880	7,678				

- -- --

Emissions Definitions

- **Direct Emissions** Directly Related to Solid Waste Management Activities
 - Biogenic Emissions Naturally Cycle Through Atmosphere; Carbon Neutral
 - Non-Biogenic Emissions from Combustion of Carbon Fuels, Materials of Fossil Fuel Origin and Other Non-Combustion Processes (Fugitive Methane Emissions from Landfill Operations)
- Indirect Emissions From Purchased Electricity, Heat or Steam
- Avoided Emissions Attributed to Displacing Purchased Power Generated by Fossil Fuel Combustion or Emissions Avoided by Recycling (Avoiding Processing Virgin Material)
- **Total Emissions** = Biogenic + Non-Biogenic + Indirect
- **Net Emissions** = Total Avoided Emissions

